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ABSTRACT 

Enamel thickness variation stems from an evolutionary interplay between functional/adaptive 

constraints (ecology) and strict control mechanisms of the morphogenetic program. Most 

studies on primate enamel thickness primarily considered the permanent teeth, while the 

extent of covariation in tooth enamel thickness distribution between deciduous and permanent 

counterparts is unreported. In this preliminary test study on some extant and fossil hominids 

we investigate the degree of parallelism in enamel proportions between the dm2 and the M1 

by a so-called "lateral enamel thickness diphyodontic index". The results did not provide an 

unambiguous picture, but rather suggest complex patterns likely resulting from the influence 

of variably interactive factors. Future research should test the congruence of the 

"diphyodontic signal" between the anterior and the postcanine dentition, as well as between 

enamel and the enamel-dentine junction topography. 

 

R!SUM! 

Le patron de variation d'épaisseur de l'émail est issu d'un compromis évolutif entre contraintes 

fonctionnelles/adaptatives (écologiques) et mécanismes de contrôle morphogénétique. La 

majorité des études portant sur l’épaisseur de l’émail des primates s’est concentrée sur les 

dents permanentes, tandis que le degré de covariation de distribution d’épaisseur de l’émail 

entre les équivalents déciduaux et permanents reste encore inconnu. Nous explorons ici le 

degré de parallélisme des proportions d’émail entre dm2 et M1 chez quelques hominidés 

actuels et fossiles, en élaborant notamment un "indice diphyodonte d’épaisseur de l’émail 

latéral" comme estimation des proportions de l’émail non-occlusal. Les résultats de cette 

étude exploratoire ne montrent pas un signal inéquivoque, mais suggèrent plutôt des modèles 

complexes résultant probablement de l’influence d’interactions entre des facteurs variés. De 

futures recherches sur le sujet devraient tester le degré de congruence du "signal diphyodonte" 

entre les dentures antérieures et post-canines, ainsi qu’entre l’émail et la topographie de la 

jonction émail-dentine. 



 

1. Introduction 

 

Following the pioneering methodological work developed by L.B. Martin for measure 

procedure standardization (Martin, 1985), the bi-three-dimensional assessment of tooth 

enamel thickness has become routinely in taxonomic and adaptive/evolutionary studies of 

fossil and extant primates (e.g., Alba et al., 2013; Kono, 2004; Kono et al., 2014; Macchiarelli 

et al., 2004, 2009, 2013; Olejniczak et al., 2008a, b, c, d; Pan et al., 2016; Skinner et al., 2015; 

Smith et al., 2003, 2005, 2011, 2012; Suwa et al., 2009; Zanolli et al., 2015, 2016a). 

Commonly used to infer durophagy and considered as a proxy of the dietary niches exploited 

by extinct species (e.g., Constantino et al., 2011, 2012; Lucas et al., 2008; Martin et al., 2003; 

Schwartz, 2000a; Teaford, 2007; Teaford and Ungar, 2015; Vogel et al., 2008), occlusal 

enamel thickness is seen as intimately related to dietary abrasiveness and selectively 

responsive to lifetime dental wear resistance (Pampush et al., 2013). 

Enamel thickness variation stems from an evolutionary interplay between 

functional/adaptive constraints (ecology) and strict control mechanisms of the morphogenetic 

program (Horvath et al., 2014; Kelley and Swanson, 2008; Kono, 2004; Simmer et al., 2010; 

Smith et al., 2012; Vogel et al., 2008). It appears to respond relatively quickly in evolutionary 

time to dietary/ecological changes (Grine and Daegling, 2017; Hlusko et al., 2004), thus being 

prone to homoplasy (Smith et al., 2012; rev. in Macho, 2015). 

Most studies on enamel thickness have primarily considered the permanent teeth, 

especially the molar series, while the extent of covariation in tooth enamel thickness between 

deciduous and permanent counterparts has been the object of limited quantitative analyses, 

including in hominids (for a recent synthetic review of studies on deciduous enamel thickness 

in humans, see table 1 in Mahoney, 2013; additionally, among other contributions see Benazzi 

et al., 2011; Fornai et al., 2014, 2016; Macchiarelli et al., 2006, 2013; Zanolli, 2015a; Zanolli 

et al., 2010a, 2012, 2014). Accordingly, a quantitatively supported answer to a number of 

questions remains so far elusive. More specifically: whenever, in a comparative intertaxic 

assessment, we score as relatively "thinly-" or "thickly-enamelled" a permanent hominid tooth 

and order it accordingly within a series of investigated specimens, does its precursor behave 

similarly and does it (tend to) occupy a comparable position within the same deciduous 

series? In another perspective: can we confidently predict an enamel thickness "category" for 

a hominid deciduous crown based on the measure of its successor (or vice versa)? Does a 



precursor-successor predictable pattern exist for tooth enamel thickness in hominids? If so, is 

it taxon-specific? 

The dm2 and M1 are part of the same developmental molar series (rev. in Bailey et al., 

2014, 2016; see also Evans et al., 2016), i.e., are meristic elements with a similar and serially 

repeated structure within the same organism (Butler, 1956, 1967; Kraus and Jordan, 1965). In 

this preliminary test study on some extant and fossil hominids we thus investigate the degree 

of parallelism in enamel proportions between the dm2 and the M1. In order to perform 

intertaxic comparisons, we established a so-called "lateral enamel thickness diphyodontic 

index" (LETDI; see Materials and methods) as a measure of the proportions in the amount of 

non-occlusal enamel (Macchiarelli et al., 2016; Zanolli, 2015b). Given the exploratory nature 

of this study, whose main goal is to capture a tendency, if any, not to assess intraspecific 

variation, or evolutionary trends, or phylogenetic relationships, the number of cases examined 

for each taxon (ranging from 1 to 5 tooth pairs) is just minimal. By definition, at this stage of 

the research the underlying assumption is that the signal revealed by each dm2-M1 crown pair 

used here, all from mandibular dentitions, represents the average condition of its own taxon, 

i.e., is taxon-representative. 

Apart for some intertaxic differences in developmental timing and patterning between the 

dm2 and the M1 (Dean, 2000, 2006, 2010; Dean and Cole, 2013), given that the dm2 is in 

functional occlusion for a much shorter time and commonly experiences lower functional 

constraints, at least until the weaning process begins (Fleagle, 2013; Swindler, 2002), 

essentially based on the extant human model (e.g., Gantt et al., 2001; Grine, 2005; Huszár, 

1972; Mahoney, 2010; Rossi et al., 1999), we expect that, independently from their relative 

qualitative "category" ("thinner" vs. "thicker"), all dm2/M1 enamel volume ratios are below 

the unit. 

 

2. Materials and methods 

 

The hominid taxa considered in this study include the four extant genera Homo (HOM), 

Pan (PAN), Gorilla (GOR) and Pongo (PON), and representatives of four fossil genera: the 

Plio-Pleistocene hominins Paranthropus (robustus) (PAR) and Australopithecus (africanus) 

(AUS), from the South African sites of Swartkrans and Sterkfontein, respectively, and the 

Late Miocene European apes Ouranopithecus (macedoniensis) (OUR), from Macedonia, and 

Oreopithecus (bambolii) (ORE), from Sardinia. Besides H. sapiens, humans are also 

represented by two extinct taxa: Neanderthals (Nea) and H. erectus from Java (Hej). The 



existence of interspecific differences in molar enamel thickness has been ascertained within 

the australopith clade (e.g., Grine and Daegling, 2017; Grine and Martin, 1988; Olejniczak et 

al., 2008b; Pan et al., 2016; Skinner et al., 2015), but their consideration here is far beyond the 

specific purposes of our present work. 

Details about the composition and origin of the mandibular dm2 and M1 

specimens/samples are provided in Table 1. The extant human teeth, all from individuals of 

European origins, represent both sexes; conversely, no detailed information, including on 

their geographic provenance (and if from captive or wild individuals), is available to us on the 

extant great ape representatives. Except for H. erectus and Oreopithecus, whose dm2 and M1 

are from different individuals, all remaining pairs are from single individuals. 

We have used the X-ray microtomographic record available to us of specimens which have 

been previously scanned at: the University of Poitiers, France, by a Viscom X8050-16 system 

(all extant taxa and Javanese H. erectus; Zanolli, 2013; Zanolli et al., 2012, and original data); 

the ID 17 beam line of the European Synchrotron Radiation Facility of Grenoble, France 

(Neanderthals and Oreopithecus; Bayle, 2008; Bayle et al., 2009; Macchiarelli et al., 2006; 

NESPOS Database, 2017; Zanolli et al., 2010b, 2016a); the South African Nuclear Energy 

Corporation (Necsa), Pelindaba, by a Nikon XTH 225 ST equipment (Paranthropus and 

Australopithecus; original data); and the analytical platform set at the Bundesanstalt fur 

Materialforschung und -prufung (BAM) of Berlin, Germany (Ouranopithecus; Macchiarelli et 

al., 2008, 2009). 

The data were reconstructed at a voxel size ranging from 21.0 to 83.2 "m, for the extant 

teeth, and from 21.6 to 50.0 "m, for the fossil specimens. Using Amira v.5.3 (Visualization 

Sciences Group Inc.) and ImageJ v.1.46 (Schneider et al., 2012), a semiautomatic threshold-

based segmentation was carried out following the half-maximum height method (HMH; 

Spoor et al., 1993) and the region of interest thresholding protocol (ROI-Tb; Fajardo et al., 

2002), taking repeated measurements on different slices of the virtual stack (Coleman and 

Colbert, 2007). 

In order to avoid the problem of occlusal wear nearly invariably affecting at least the dm2 

in most molar pairs, we uniquely considered lateral enamel. As lateral enamel thickness 

topography deeply relates to crown morphology, it is expected to bring a taxon-specific 

signature, even if likely diluted compared to that provided by occlusal enamel (e.g., Kono and 

Suwa, 2008; Macchiarelli et al., 2013; Suwa et al., 2009). To quantify lateral enamel, the best-

fit plane across the cervicoenamel line was firstly set on each crown and the tooth material 

below this basal plane eliminated (Olejniczak et al., 2008a). Then, a parallel plane to the 



former, tangent to the lowest enamel point of the occlusal basin, was defined and all material 

above it was also removed (Benazzi et al., 2011; Macchiarelli et al., 2013; Toussaint et al., 

2010). Only the crown portion between these two planes was preserved to estimate tissue 

proportions. 

On the new set of virtually simplified crowns, five surface and volumetric variables were 

digitally measured (or calculated): LVe, the lateral volume of enamel (mm3); LVcdp, the 

lateral volume of coronal dentine, including the lateral coronal aspect of the pulp chamber 

(mm3); LSEDJ, the enamel-dentine junction (EDJ) lateral surface (mm#); 3D LAET 

(=LVe/LSEDJ), the three-dimensional lateral average enamel thickness (mm); 3D LRET 

(=100*3D LAET/(LVcdp1/3)), the scale-free three-dimensional lateral relative enamel 

thickness. Intra- and interobserver tests for measurement accuracy run at different times by 

four observers revealed differences <4%. 

Pearson correlation tests among the variables listed above show that, in each molar pair, 

the 3D lateral relative enamel thickness (3D LRET) exhibits the highest correlation (p<0.01 

vs. p<0.02 for 3D LAET and p<0.05 for LVE). A "lateral enamel thickness diphyodontic 

index" (LETDI) has been thus calculated as follows: 3D LRETdm2/3D LRETM1. Statistical 

analyses were performed with R v.3.2.1 (R Development Core Team, 2017). 

To visualize similarities vs. differences in enamel thickness topography within an 

assemblage of so variably sized and shaped teeth, ad hoc imaging techniques were used to 

virtually unroll lateral enamel and to project it into standardized morphometric maps (Bayle et 

al., 2011; Bondioli et al., 2010; Macchiarelli et al., 2013; see also Morita et al., 2016, 2017; 

Puymerail, 2011; Puymerail et al. 2012a, b). By using a custom routine developed in R v.3.2.1 

(R Development Core Team, 2017) with the packages spatstat (Baddeley et al., 2015) and 

gstat (Pebesma, 2004), enamel thickness values were standardized between 0 and 1 and each 

morphometric map was set within a grid of 40 columns and 180 rows. We then performed a 

generalized Procrustes analysis (GPA) and a between-group principal component analysis 

(bgPCA; Mitteroeker and Bookstein, 2011) based on the standardized morphometric map 

outputs with the package Morpho v.2.4.1.1 (Schlager, 2017) for R v.3.3.3 (R Development 

Core Team, 2017). 

 

3. Results 

 



The values of the lateral relative enamel thickness (3D LRET) of the dm2 and of the M1 

and those of the LETDI "diphyodontic index" assessed for the ten hominid taxa represented in 

this study are shown in Table 2. 

For the 3D LRET of the deciduous second molar, Ouranopithecus (12.0), Paranthropus 

and the Australopithecus from Sterkfontein (both 10.9) show absolutely thick enamel, while 

Pongo and Gorilla (global range: 4.7-6.3) and Oreopithecus (6.0) are relatively thin-

enamelled. A difference is noticeable between the two African apes, Pan having thicker 

enamel (6.3-8.9), but on average still thinner than measured in extant humans (8.0-9.2). 

Enamel in Neanderthal is thinner compared to the extant values (6.4-7.1), while the H. erectus 

estimate (9.2) coincides with the upper end of the human range revealed by our sample of five 

individuals. As a whole, the decreasing order for the lateral relative enamel thickness of the 

lower dm2 is as follows: Ouranopithecus > Paranthropus = Australopithecus > H. erectus ! 

extant humans ! Pan $ Neanderthals > Oreopithecus > Gorilla $ Pongo, the variation interval 

covered by 3D LRET being comprised between 12.0 and 4.7. 

Three sets are identifiable for the 3D LRET of the lower M1: the first distinguishes the 

absolutely thickly-enamelled Paranthropus (15.6) and Ouranopithecus (13.4), the second 

assembles the variably intermediate Homo (all taxa), Pan, Australopithecus and Oreopithecus 

(range: 8.3-11.8), while the third includes the thinly-enamelled Gorilla and Pongo (range: 

5.9-8.1)". In this context, Pan (8.8-11.8) is indistinguishable from the extant human condition 

(9.3-11.2). Interestingly, the estimate for the Indonesian composite H. erectus representative 

(9.1) fits the Neanderthal range (8.3-9.1), as well as the value obtained for Oreopithecus (9.2). 

Here, the decreasing pattern is as follows: Paranthropus > Ouranopithecus > 

Australopithecus ! extant humans $ Pan ! Oreopithecus $ H. erectus $ Neanderthals > 

Gorilla $ Pongo, the values globally ranging from 15.6 to 5.9. 

The last column of Table 2 presents the values of the LETDI ratio. They widely range from 

0.63, in a Pongo individual and in Oreopithecus (0.65), to 1.01, in H. erectus (Fig. 1). Except 

for the latter taxon, the totality of the ratios are <1.0, even if values near the unit are displayed 

by an extant human individual (0.99) and by Australopithecus (0.98). According to this 

parameter, even if distinct for its greater amount of enamel, Paranthropus (0.70) is closer to 

Oreopithecus (0.65) than to Ouranopithecus (0.89), with which it otherwise shares thickly-

enamelled dm2 and M1. Within our limited set of investigated cases, Pongo and extant 

humans display larger variation than Neanderthals and the African apes (Fig. 1). 

Distinctly for each taxon and for each molar type, the standardized morphometric maps 

(MM) imaging the virtually unrolled and projected lateral enamel are shown in Fig. 2. For the 



extant taxa and Neanderthals, they represent consensus maps generated by interpolating the 

available individual records into a single dataset (Puymerail, 2011; Puymerail et al., 2012a, 

b). Because each MM is scaled according to the maximal value of the analysed tooth, the 

patterns expressed by the dm2s and the M1s are independent from the absolute and relative 

enamel thickness values. 

In all taxa and both molars, enamel is absolutely and relatively thicker towards the occlusal 

aspect than cervically. For the dm2, thickening is commonly found buccally; however, 

thickening in Ouranopithecus is more evenly distributed around most of the subocclusal 

contour. The extant human pattern is somehow closer to that displayed by H. erectus than by 

the Neanderthal deciduous molar. The African apes share similar enamel distribution, also 

displayed, to a lesser extent by Pongo. In this context, the least contrasted map is that of 

Paranthropus, which is distinct from Australopithecus and, mostly, from Ouranopithecus, but 

which in turn recalls that of Oreopithecus. In the MMs of the M1s, thickening is not mainly 

concentrated buccally, as seen for the dm2s, but more commonly spread 

buccally/mesiobuccally and also lingually/distolingually. However, this is not exactly the case 

in Ouranopithecus and, to a lesser extent, in Oreopithecus, where thickening is essentially 

concentrated mesiolingually, in the former, and distolingually, in the latter. All human 

representatives, notably extant humans and Neanderthals, show a similar pattern, even if 

slightly accentuated distolingual thickening is found in H. erectus. With this respect, the 

extant human and Neanderthal topography resembles that of Australopithecus. Here again, the 

signatures displayed by the African apes are similar to the pattern revealed by Pongo, which 

in turn recalls that of Paranthropus. Finally, in terms of intertooth polarity of the signal, the 

most similar MMs are those of the extant apes (notably Gorilla and Pongo), while distinct 

topographic differences are appreciable in Paranthropus and Oreopithecus. 

The bgPCA based on the MM scores only provides modest discrimination among the taxa 

along both bgPC axes (PC1: 56.37%, PC2: 31.11%). However, the representatives of all 

extant and fossil hominins (HOM, Nea, Hej, PAR, AUS) tend to regroup on the negative 

aspect of bgPC1, whereas the extant apes (PAN, GOR and PON) mostly fall in the positive 

values along this axis (Fig. 3). The two Miocene hominids (OUR and ORE) show distinct 

signals, Ouranopithecus being closer to Homo, while Oreopithecus more closely resembling 

Pan and Gorilla. The specimens in the negative space of bgPC1 display evenly spread 

relatively thicker enamel deposited towards the more occlusal quarter of the entire surface, 

while the specimens in the positive space of bgPC1 have two vertically projected thickened 

"pillars" on the buccal and lingual aspects, respectively, separated by two large strips of 



thinner enamel nearly covering the entire mesial and distal crown sides. Along bgPC2, only 

Pongo is slightly discriminated from the other taxa and nears the extreme values of the 

negative space because of its proportionally thicker intercuspal lingual enamel (Fig. 3). 

 

4. Discussion 

 

A limiting/complicating factor in our analytical approach is represented by the use of non-

occlusal enamel compared to the information imprinted occlusally, or even at specific cuspal 

level (e.g., Grine, 2005; Kono et al., 2002; Macho and Berner, 1993; Mahoney, 2010; 

Schwartz, 2000b). As expected, a test of "lateral" (LETDI) vs. "occlusal enamel thickness 

diphyodontic index" (OETDI) preliminarily performed on five specifically selected unworn 

dm2-M1 crown pairs representing two extant humans and one individual for each extant great 

ape, systematically provided OETDI < LETDI values (on average, 20% lower), thus 

indicating a higher degree of volumetric discrepancy in dm2-M1 enamel proportions at 

occlusal level. However, while occlusal enamel topography is more directly informative in 

terms of functional activity and adaptive responses (e.g., Guy et al., 2015; Kono, 2004; Kono 

and Suwa, 2008; Olejniczak et al., 2008b), lateral enamel thickness is also involved in 

dissipating occlusally-related stresses (Benazzi et al., 2013a, b). Nonetheless, it is also 

possible that the use of the entirely unrolled and projected lateral crown band introduced 

inessential, or even somehow noisy information. In fact, while individual morphometric maps 

clearly reveal site-specific differences among the compartments which relate to occlusal cusp 

shape and topography (Fig. 2), at this stage we did not yet decompose the band in quarters, 

and did not examine and compare their sometime distinctly heterogeneous signatures, a task 

which should also limit the effects of differences in tooth crown architecture, notably outer 

surface convexity and intercuspal groove depth and extension. This, will require anyhow 

additional research and the development of an ad hoc analytical protocol. 

The expectation, formulated in a purely functional perspective, of LETDI ratios all <1.0 is 

not fully satisfied by present results (for enamel proportions in extant human lower dm1s-

dm2s-M1s, see Mahoney, 2010), or is even falsified in three representatives from as much 

taxa: H. erectus (1.01), an extant human individual (0.99), and the Australopithecus 

representative (0.98), even if the large majority of the ratios are around or below 0.8. 

However, it should be noted again that the H. erectus value has been obtained using two 

individuals (Table 1), which is methodologically inappropriate and may have introduced a 

bias (see comments below about variation). The two minima for the LETDI correspond to 



Oreopithecus (0.65, also obtained from two individuals) and Paranthropus (0.70). This is 

interesting, and may be relevant, as it indicates that a large difference between the dm2 and 

the M1 in the proportional amount of enamel volume deposited along the crown walls may 

occur in both absolutely thickly-enamelled and relatively thinly-enamelled hominids. 

Anyhow, the results (Table 2, Fig. 1) show that also the opposite can occur, i.e., that the 

deciduous and permanent molars of both thickly-enamelled hominids (e.g., Ouranopithecus) 

and representatives of relatively thinly-enamelled taxa (e.g., Gorilla, Pongo) may present 

comparable values of lateral relative enamel thickness (3D LRET). In sum, even if present 

results tend to support the evidence that primate "deciduous teeth have thinner enamel than 

permanent teeth" (Swindler, 2002: 14), including in humans (Mahoney, 2010), the extent of 

their proportions for nonocclusal enamel appears rather variable. 

By definition, the study assumed that the signal revealed by each dm2-M1 crown pair 

represents the average condition of their own taxon (including for the composite H. erectus 

and Oreopithecus representatives). However, even if molar enamel thickness does not seem to 

behave as sexually dimorphic (e.g., Hlusko, 2016; Hlusko et al., 2004; Rossi et al., 1999), a 

growing body of evidence indicates a considerable amount of interspecific temporal and 

geographic variation (e.g., Kato et al., 2014; Smith et al., 2011, 2012). Conversely, the extent 

of intraspecific variation is in most cases from poorly reported to simply unknown, and even 

in extant humans enamel thickness chrono-geographic variation is far from being 

appropriately documented and, with very few exceptions (e.g., Feeney et al., 2010; Grine, 

2005), most currently available information is limited to European or European-derived 

population samples (rev. in Le Luyer, 2016; see Zanolli et al., 2017). At any rate, while just 

representing a signal because of the extremely limited number of investigated cases, present 

evidence from the African apes (Table 2) suggests variation in lateral enamel thickness may 

be similarly large in both deciduous and permanent molars. 

For more comprehensively interpreting the signal provided by the "lateral enamel thickness 

diphyodontic index" - or by any kind of "enamel thickness diphyodontic index" (ETDI) 

suitable for appropriately assessing the precursor-successor tooth enamel volume proportions 

(and its distribution pattern as well) - a number of biological, behavioural and ecological 

factors should be taken into account. 

The four extant and four extinct hominid genera represented in our analysis are known for 

exploiting, or are reported to have exploited, respectively, a wide range of food resources in a 

variety of diverse environments (Fleagle, 2013; Guatelli-Steinberg, 2016; Hartwig, 2002; 

Merceron et al., 2005; Nelson and Rook, 2016; Scott et al., 2005; Sponheimer and Lee-Thorp, 



2015; Ungar, 2007; Ungar and Sponheimer, 2013). Depending on the taxon-specific feeding 

habits, the mastication timing may be considered as another variable which, together with 

food abrasiveness, likely plays a role in the selection of enamel thickness because of dental 

wear resistance, i.e., adaptation is not only resistance to fracture, but also to prolonged wear to 

which enamel thickness can be related (Grine and Daegling, 2017; Pampush et al., 2013). 

While the investigative tool used here - the LETDI - did not reveal any immediately obvious 

link with dietary and/or ecological diversity (for example, relative medium-low [<0.80] 

values are shared by Neanderthals, Pan, Gorilla, Pongo, Paranthropus and Oreopithecus, 

while extant humans H. erectus, Australopithecus and Ouranopithecus provided medium-high 

values [>0.80]), we note anyhow that in the bgPCA of the morphometric maps (Fig. 3): the 

more folivorous taxa (Pan, Gorilla, and perhaps Oreopithecus) are found in the positive space 

of bgPC1; Pongo, a slightly more diversified folivorous feeder, is found in the negative space 

of bgPC2; the omnivorous humans are scattered across the negative space of bgPC1 and the 

positive space of bgPC2; Paranthropus, Australopithecus and Ouranopithecus, relying on 

diverse diets but likely sharing the inclusion of hard/gritty food items, occupy a more central 

position along bgPC2 (Fig. 3). In sum, even if we agree the reliability of enamel thickness as 

a dietary indicator breaks down in some cases where phylogenetically closely-related species 

that consume different amounts of hard items are considered (Grine and Daegling, 2017), at a 

first glance, differences in "dental ecology" (sensu Cuozzo et al., 2012) seem to play a role in 

affecting the polarity of the dm2/M1 ratio used in the present study. If so, additional research 

- using any kind of ad hoc ETDI - should be performed on the front teeth. 

The investigated taxa are also diverse in body mass (Fleagle, 2013; Hemmer, 2015), a 

variable which in extant primates is highly correlated to a number of life history attributes 

(e.g., weaning age, age at maturity, age at first breeding in females), as well as to tooth size 

(e.g., molar crown area) (rev. in Hemmer, 2015). However, as shown in Fig. 4, no obvious 

correlation exists between LETDI and body mass. Even if three among the four relatively 

smaller body-sized representatives - i.e., Pan, Paranthropus and Oreopithecus - are more 

closely plotted, the Australopithecus is well separate due to its high LETDI. Also, the 

similarly-sized three representatives of our own taxon (extant humans, Neanderthals, H. 

erectus) differ in terms of LETDI (but see above the point on the composite H. erectus), while 

extant humans and Gorilla, which display comparable LETDIs, differ in average body mass. 

Finally, the two largest-sized taxa considered in our analysis, Gorilla and Ouranopithecus, 

provided quite distinct LETDI ratios (Fig. 4). 



Our "diphyodontic index" seems also poorly or no related to the age at eruption of the first 

lower permanent molar, another key life history trait which in hominins marks the end of in-

fancy (Kelley and Bolter, 2013). In fact, while also a strong genetic contribution to variation 

in timing of primary tooth emergence is well ascertained in humans (Chan et al., 2012), and 

likely also in hominids (Swindler, 2002), the LETDIs of Pan and of the Australopithecus rep-

resentative used here, for example, i.e. of two taxa showing comparable ages at LM1 eruption 

(Hemmer, 2015: table 15), markedly differ. 

 

5. Concluding remarks 

 

In a previous study, we noted that "some evidence suggests deciduous versus permanent 

molar enamel thickness distribution and relative proportions vary among extant and fossil 

hominid taxa… Inner signatures extracted from the primary and secondary dentition, 

respectively, may or may not provide similar/comparable pictures of time-related intrataxic 

evolutionary changes in tooth tissue proportions" (Macchiarelli et al., 2013: 259). The results 

scattered from the present exploratory test using a newly developed analytical tool - the 

"lateral enamel thickness diphyodontic index" (LETDI) - did not anyhow provide an 

unambiguous and immediately readable picture, as otherwise predictable on the basis of some 

ontogenetic and morphological studies using sequential teeth (e.g., Bailey et al., 2014, 2016; 

Evans et al., 2016), but rather suggest complex patterns likely resulting from the influence of 

a number of variably interactive factors. However, while increasing evidence exists for 

lifetime-related enamel thickness and dietary wear association in extant primates (e.g., 

Pampush et al., 2013) and positive selection for adaptation in human evolution has been 

shown for the genes coding for the enamel matrix proteins (e.g., Daubert et al., 2016; Horvath 

et al., 2014), given the high phenotypic plasticity of enamel thickness (e.g., Hlusko, 2016; 

Kato et al., 2014; Smith et al., 2012), it is also possible that a fraction of the signal provided 

by any kind of tooth enamel "diphyodontic index" is non-adaptive, or that the degree of 

adaptability and functional significance of this trait varies topographically across the 

dentition. With this respect, together with some methodological advancement in the 

identification of the most reliable parameters and tooth crown areas to be considered for 

intertaxic investigations, future research should also test the congruence of the "diphyodontic 

signal" between the anterior and the postcanine dentition, as well as between enamel and the 

enamel-dentine junction topography. 
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